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Group Classification of a Class of Coupled
Equations

Qu ChangZheng'
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A complete group classification of a class of coupled equations that appear in
many physical problems is presented by developing the method of preliminary
group classification of Ibragimov et al. We give a symmetry group analysis for
an interesting example.

1. INTRODUCTION

Since Lie (1881) gave a group classification for a wide class of second-
order partial differential equations with two independent variables, the prob-
lem of group classification for partial differential equations has attracted the
attention of both theoretical physicists and mathematicians. It is well known
that the problem of group classification of a given family of equations is
more complicated than the problem of calculating the symmetry groups for
given equations.

Recently Ibragimov et al. (1991) gave a simple approach for a partial
solution of group classification in terms of equivalence algebra. This method
has been successfully applied to some interesting partial differential equations,
for instance, a model of detonation (Ibragimov and Torrisi, 1992), the nonlin-
ear diffusion equations (Yung et al., 1994), and a binary reacting mixture
(Lalicate and Torrisi, 1994).

This article extends the technique and applies it to a wide class of
coupled equations that appear in dispersionless dynamic systems. The coupled
equations read here

", + % =0 (1.1a)
vy—g=0 (1.1b)

where f and g are arbitrary functions of u and v.
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An interesting example of (1.1) is the system
Ar=u+ @0d), =0 (1.2a)
A, =v, —2uv =0 (1.2b)

which describes an integrable dispersionless model, and can be solved by
the inverse scattering method (Konno and Oono, 1994).

This paper is arranged as follows. In Section 2, we construct the equiva-
lence algebra and the projective algebra L,. The adjoint group for algebra L,
is given in Section 3. In Section 4, we obtain the optimal system of one-
dimensional subalgebras of L;; the classification results are listed in Table
IL. Section 5 gives the symmetry group analysis. We end with a summary of
the results.

2. EQUIVALENCE ALGEBRA AND PROJECTIVE ALGEBRA L,

An equivalence transformation is a nondegenerate change of variables
t, x, u, v in addition to a change of the functions f(u, v) and g(«, v).
The generator of an equivalence transformation has the form
d i 9 9 i} d
Y= -+ —+n—+ —+p =+ p2— 2.1
g8t gaxnau 1]6v pJprdag @D
where &, v, i = 1, 2, are functions of (¢, x, u, v) and p/, i = 1, 2, are
functions of (¢, x, u, v, f, g).
Equations (1.1) can be written as

w + fou v =0 (2.2a)
vy —8 =0 (2.2b)
i=£=0 (2.2¢)
&=8=0 (2.2d)

The invariance conditions for (2.2) are
Pr®Y(u, + f,ou, + f,-v,) =0 (2.3a)
Pi@Y(v, —g) =0 (2.3b)
Pr@Y(f) = PrPY(f) = 0 (2.3¢)
Pr®Y(g) = Pr'PY(g,) = 0 (2.3d)

under the conditions (2.2), where Pr?Y is the second prolongation of Y.
The effective second prolongation Pr®Y of Y is
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i d
PrdY = ¥V + mlx - 4 25 . bl
N TV e, TRy T
d d d
+p‘l,v_+p“]u___+ 20 .
. of, " o
2 2.t 0
+ 2 2.4)
08« Vi,

The formulas for m'*, m>%, w, p!*% ' ', u?, p** and n** can be
found in Olver (1986). For instance,

N = g mas T Ay, + (3 Ma + mRv)u
+ Thzcuxt + ’ﬂfvvz + ”f]ﬁvuxvz + ngvvxvt - C[lxvt
+ (ﬂ% - C/l - C,%)Vtx - Ctzxvx - Ctzvxx - gtvn (25)

Substituting (2.4) into (2.3), and solving the overdetermined partial
differential equations, we obtain

g =cit + oy E=cx+ cy n' = csu + cg, W=+ e
pt = (c; — ¢ + e)f + o, p2=(c; — ¢ — )8 (2.6)
with arbitrary constants ¢;, i = 1,2, ..., 9.

The equivalence invariant vector field can be written as

d d

Y= (Cl[ + 02) 5 + (C3.X + 64)5
d 0
+ (C5I/l + CG) — (C7V + Cg) -
du Y

0
+ug—q+qv+m§+wa—q—@m@ @.7)

f
Then the equivalence algebra is generated by
Y‘=t6%_ ;—f——g%, Y2=§;,
LG E N
Y5=uaa—u+f—§}, Y(,:;%,
Y7=v§;+g:%, YSZE%» Y9=(%C (2.8)
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Let
3 d 3 d
Z=0 =+ -+ —+ 9= 2.9
Cuttatvn g 29)
) d d 9
Z=q'—+nP—+p =+ p2— 2.10
" o "oy H“af pl'6g (2.10)

To calculate the principal Lie algebra, we need the following proposition
{Konno and Oono, 1994).

Proposition. An operator Z belongs to the principal Lie algebra L, for
the system (1.1) <> Z has one equivalence generator ¥, such that

Z=0 (2.11)
In terms of above proposition, we immediately have
CIL=C3=C=C=C1=cg=¢Cg=0 (2.12)
So the principal Lie algebra Lo is generated by
il d

Zi=<, Zy=—
1 2 ax

o (2.13)

The functions f and g depend on « and v, and the projections of ¥;, i =
1,...,9,0n (u,v,f, g)are

d d
Z, =p(1) = _fa—f_ ga—g
d

L=m%%ﬁ%—g¥

d 0
Z = = J— + e
3 = pr(¥s) = u ou faf

3
Zy = pr(¥g) = a

i} d
Zs=pr(Y;) =v—+ g —
s = pr(¥y) Vav g&g
d
ZG:PT(YS):E
)
Z = pr(¥y) = = 2.14)

af
We denote L, = {Z;,i=1,2,...,7}.
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3. ADJOINT GROUP FOR L,

The commutation relations of {Z}, are summarized in Table L
Denote by A the elements of the algebra adl,; a basis of the algebra
adl; is

A, =12 ...,7 .
[Za’ ZB] GZQ o ’ (3 I)

Using Table I, we obtain

A =17, %, A; = “27'6‘%
As = —Z aiZﬁ’ As = Zg 5%;
Ar = 27(8922 2 - aizl) (32)

The element A; generates the one-parameter group of linear
transformations

Zy =17, Zy = 2, 7y = Zs, Zi=1 —apZ,
Z5 = Zs, Zs = Zs, Z; = (1 — a3)Zy (3.3)

with arbitrary parameter a,, which can equivalently be represented by a matrix

Table I. Commutation Relations of {Z}

Z A Z Z, Zs Z z
Z, 0 0 0 0 0 0 Z;
23 O 0 0 - Z4 0 0 - Z7
Z, 0 0 Z, 0 0 -Z 0
Zs 0 0 0 0 0 0 0
Zs 0 0 0 0 Zg 0 0
Z, -7 Z Z, 0 0 0 0
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-1 -
1
1
Ms(ay) = 1 = a , —o<ay< +®
1
|
1 - as
(3.4)
Along the same lines, we obtain M\(a,), Mx(a,), . . ., My(a,), —» < a;
< +oo, and
7
M= H Mya)
i=1
1 0 —a;]
1 O ay
1 dy ay
= 0 1l-—ay O (3.5)
0 1 [273
0 1- as 0
0 (I + a1 — a)(l — a3)

To determine the adjoint group of L;, we require the coefficients e =
(e;) of

;
Z= eZ (3.6)

The vector e is transformed to e by the transposed matrix M™ of M, and

then the transformation e has the following form:

€ = e, €, = e, e; = es, e, = asez + (1 — az)ey, es = es

€ = ages + (1 — as)es

e = (1 + a)l —a)(l — as)e; + as(e; + &3 — e) (3.7
These transformations give rise to the adjoint group of the algebra L,.

4. CONSTRUCTION OF THE OPTIMAL SYSTEM OF ONE-

DIMENSIONAL SUBALGEBRA OF L,

In this section, we use a general approach to construct the optimal
system of the one-dimensional subalgebra of L;. The starting point is the
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transformations (3.7). Notice that transformations (3.7) leave €', €2, €3, and
¢’ invariant. So we have to look for all possibilities for e,, e,, e;, and es and
in every case to simplify other components of ¢ by means of (3.7).

First, we consider the case

e, # 0, e, # 0, ey # 0, es # 0 “.0

In this case, we choose

a=a;=0 4.2)
and
dy =16 =0 4.3)
by putting
a, = -2 g= % 4.4)
3 es

To further proceed, we distinguish the two following subcases:

e; tes—e 0 (4.5a3)
e, teys—e =0 (4.5b)
If (4.5a) is valid, we choose
a=—— g =a=0 (4.6)
€ — € 7 €3
Then ¢ becomes
(e1, €2 €3, 0, €5, 0, 0) 4.7
In the subcase (4.5b), we get
g, = (1 + a)(l — aye, (4.8)
Therefore e is transformed to
(ey + €3, €5, €3, 0,5, 0, (1 + a)(1 — ayey) 4.9

so we obtain the following two nonequivalent operators which correspond
to (4.5a) and (4.5b):

Zs + oZ, + BZ, + vZ;, aFB+y, oB,y#*0 (4103
Zs + (o + BYZ, + aZ, + BZ; + vZ,,
a+B#0 oBF0 (4.10b)
The second case is

e; * 0, e, # 0, ez # 0, es =10 “@.1D
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Following the same procedure, we get two nonequivalent operators
Z, + oZ, + BZy + vZ, a#0, B#0, a+B#1 (4.12a)
Zy+ aZy + (1 — wyZ; + BZs + vZ,, a 0,1 (4.12b)

The other cases are

e # 0, e, # 0, ey = 0, es ¥ 0 4.13)
Z 4 aZy + BZe +v¥Zs, a#0,1, y#0 (4.142)
Zo+Z, +aZ,+BZs+vZ, PB#O (4.14b)

e 0, e, # 0, e; =e5=0 4.15)
Z, + aZy, + BZy + vZ,, a#0,1 (4.16a)
Z\+Zy + aZy + BZg + vZ, (4.16b)

e #0, e, = 0, e; # 0, es # 0 @.17
Z, + aZ; + BZs, a#0,1 (4.18a)
Z, + Zy + aZs + BZ,, aF0 (4.18b)

e # 0, e, =es =0, e; # 0 4.19)
Z, + aZ; + BZ, a#0,1 (4.20a)
Zy + Zy + aZg + BZ; (4.20b)

e, # 0, e, = e; =0, es #0 4.2
Z, + oZ, + BZs, B+#0 (4.22)

e #0, e, =€e3=e5s=0 (4.23)
Z, + aZ, + BZ, (4.24)

e; =0, e, # 0, e; * 0, es # 0 (4.25)
Z, + aZ; + BZs, a#*0,—1, B#0 (4.26a)
Z, — Zy + aZs + BZ,, a#0 (4.26b)

e =e5 =0, e, 0, es # 0 “4.27
Z, + aZ; + BZ, a¥+0, -1 (4.28a)
Zy, — Zy + aZg + BZ, (4.28b)

e = e; =0, e, 0, es + 0 (4.29)
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ZQ+(XZ4+BZS, B#O

e, #+ 0, e, =e3;=e5=90
Z, + aly + PZs

e = e =0, ey # 0, es #0
Zy + aZs, oa#*0

ey = e, =e3 =10, es ¥ 0
Zs + oZ, + BZ,

ey = e, =es =0, ey 0
Z

ey, =e,=e3=¢e5 =10
Za, 20,2y + Zg, 7y — 26, 2y + 2o, 2y — Zn, Zs + 7,
Zo — 23, 2y + Lo + 2y, 2y + Zg — 7,
Zy —Zet+ 721,724 — Ze — 74

2023

(4.30)

4.31)
(4.32)
(4.33)
(4.34)
(4.35)
(4.36)
(4.37)
(4.38)
(4.39)

(4.40)

Summarizing the above results, we obtain the following optimal system

of one-dimensional subalgebrals of L;:

Z“)=ZS+(XZI+BZZ+’YZ3 (a’B’Y¢07a¢B+Y)

ZD =Zs+ (a + B)Z, + aZ, + BZ; + vZ; (@ #0,8#0)

Z® =7 +aZ, + BZi+vZs (0, B#0a+BF1)
ZO=Z +aZ, + (1 —)Z + BZ +¥Z; (@ #0,1)
Z® =7 +aZ, + BZ,+vZs (@ # 0,1,y #0)

ZO =7, + Z, + aZ, + BZs + vZ; (B # 0)
ZN=Z +aZ, + PZy+vZs (B #0,a#0,1)

Z® =7 +aZ, + vZg (y#0)

ZO =7+ 72, + aZy + BZs +¥Z;  (a #0)

ZOO =7, + 7, + BZs + vZ; (B # 0)

Z0W = 7, + aZ; + BZs (a#0,1,B#0)

ZUD =7 + Z; + aZs + BZ;,  (a # 0)
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ZW =7 +aZ; +BZs (a#0,1)
ZUY = Z, + Zy + aZs + BZ,

709 =7, + aZ, + BZs (B # 0)
Z09 =7, + aZ, + BZs (B # 0)
Z =7, +aZy+ BZs (@ #0,—1,B #0)
ZU® =7, — Zy + oZs + BZ;

Z09 =7, + aZy + BZg (. # 0, —1)
Z =7, — 7, + 0Zs + BZ,

7z =7, + aZ, + BZs

Z =7, + aZy + BZs (o # 0)
Z* =7, + BZ, B*0

Z = Z, + aZs

Z® = Z7Zs + aZ, + BZ,

AR
=7,
70 =

Z® =7, + Z
Z09 =7, — 7
80 =7, + 7,
zZ00 =7, -7,
Z® =7+ 7,
Z09 =7, -7,

709 =7, + Zg + Z,
Z09 =7, + Z, — 7,
Z0N =7, - Zg + Z,
0¥ =7, - Zs — 7, (4.41)

Applying the above results, we can give a complete classification admit-
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ting an extension by one of the principal Lie algebra for (1.1). The results
are listed in Table II.

5. SYMMETRY GROUP APPROACH FOR (1.2)
The symmetry algebra of (1.2) consists of differential operators of the
form

J 0
X =&t x,u,v) — + 0, x, u,v) — + &, x, u, v) 9
ot ox ou

+ W, x, u, v) % 5.1

such that their second prolongation satisfies
PrOX(A)| a=04=12 = 0, i=1,2 (5.2)

This condition is imposed by application of the differential operator Pr®
to A; and then elimination. Equating to zero the coefficients of linearly
independent expressions in the ¢ and x derivatives of u and v, we obtain a
system of determining equations for the coefficients {, m, ¢, and ¥ in (5.1).
The general element of the symmetry algebra of (1.2) has the form

X = _(.9._, Y = t—a— — U -—a——— — vy —-(?—
ot ot Ju ov
0 J
o) = ox)— ~ o (0u — (5.3)
ox du

where o(x) is an arbitrary function of x. We thus see that this Lie algebra is
indeed infinite dimensional, as its element is labeled by an arbitrary func-
tion o(x).

The commutation relations of (5.3) are

X, Y] =X, [¥Z1=[X,Z21=0
[Z(c), Z(o,)] = Z(o0;, — 6,0)) (5.4)

which shows that [X, ¥, Z} has a Kac—-Moody-Virasoro structure.

We now look for the particular solutions of (1.2) that are invariant under
the subgroups of the symmetry groups which correspond to the Lie algebras
(5.3). To be clear, we distinguish the following cases.

Case (i). The subalgebra Y + Z(x).
The solutions of (1.2) have the form

u = x"f), v =x"g(I), I=tlx (5.5
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Substituting (5.5) into (1.2), we find that f(/) and g(I) satisfy
Ig" +2¢' +2fg =0 (5.6a)
fl—2g*—2gg’ =0 (5.6b)
Eliminating f, g satisfies
Igg” + 3gg" — 2g'% — Ig'g" + 4g* + 4Ig%g’ =0 (5.7

Using the transformation

(5.8)

o

il
N |
o

we find that (5.7) becomes
I3g" + 388" —28° —IgF + g+ 1§ =0 (5.9

This equation can be reduced from dispersive long-wave equations in
two spatial dimensions.

Case (ii). The subalgebra Y — Z(1).
In this case, the solutions of (1.2) have the form

u = f(), v = xg(l), I=uxt (5.10)

fand g satisfy
f 4+ 2g%+ 2gg’ =0 (5.11a)
Ig" +2¢' = 2fg =0 (5.11b)

It’s easily seen that f can be determined by g, and g also satisfies (5.7).

Case (iif). The subalgebra of aZ — z(1).
The solution in this case is a so-called one-soliton solution, which takes
the form

u==[1—2sech’(t + ax + b)] (5.12a)

a
2
v = —sech(t + ax + b) (5.12b)

where a, b are two arbitrary constants.

6. SUMMARY AND DISCUSSIONS

We have shown the complete group classification of the coupled PDEs
(1.1) admitting an extension by one of the principal Lie algebra. Moreover, we
have constructed the symmetry algebra for coupled integrable dispersionless
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equations (1.2) and obtained the similarity reductions, which yield an interest-
ing ordinary differential equation, which also can be reduced from a dispersive
long-wave equation in two spatial dimensions.

It is also worth mentioning that since there are an infinity of conserved
quantities for (1.2), a natural and interesting problem is how to get more
symmetries for (1.2). Second, since (1.2) is a integrable model, do there exist
other classes of partial differential equations in Table II which are integrable?
We leave these problems for future study.
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